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1. INTRODUCTION

Previous analysis of advanced aircraft designs (see Reference 1) has shown that a modest
amount of noise reduction is attainable by inclusion of advanced high lift systems. This
was demonstrated for short-to-medium range and medium-to-long range aircraft designs.

It was also found that the design techniques which reduce noise further, such as oversizing
the wing to reduce the takeoff thrust requirement, and reducing the approach flap setting
maximizes the noise benefit of advanced high lift systems without a significant performance
or aircraft weight penalty. These design techniques may also be applied to the conventional
high lift wing, with noise improvements of lesser magnitude. The objective of this follow-
on study is to assess the noise benefit advanced aircraft design yields for communities both
close to and further away from airports.

In the past aircraft operators were subjected to a variety of noise restrictions established by
local authorities of “noise sensitive airports”, such restrictions included noise limits at
specific locations and total community exposure area limits. These restrictions resulted in
aircraft type noise classifications, curfews and slot allocation schemes intended to reduce
community noise impact. Operators, as a consequence of these regulations, developed
customized flight procedures for individual airports in order to minimize the impact on their
operations. This practice was somewhat restricted when the FAA standardized noise
abatement takeoff procedures by recommending two certified procedures per aircraft type, a
“close in “ and a “distant” community noise abatement procedure. “Close in” has been
defined as areas within 5 nautical miles of the airport, “distant” is considered as 5 - 10
nautical miles. Communities beyond this were not considered since modern subsonic
aircraft are not expected to cause disturbances this far from the airport except for perhaps
operations during late night hours and in remote areas where background noise levels are

very low.

In the present study two flight procedures, one for close in communities and one for distant
communities, were defined for both class of aircraft designs of the previous study and
evaluated at specific airports for their effectiveness at reducing community noise.

Analysis of the impact on overall operations at an airport was limited to older types of
aircraft and more modem aircraft that currently have conventional high lift systems. It was
recognized that operators will most likely choose to fly their quietest aircraft out of the most
noise restrictive airports. And since the aircraft of this study with advanced high lift
systems were sized for noise they will be the quietest aircraft.



The terms “conventional” and “advanced” used in this report and in the prior report
(Reference 1) describe high lift systems where “Conventional” refers to systems which are
simple, light-weight, low-cost, and require low maintenance. “Advanced” systems have a
higher lift to drag (L/D) ratio, and are complex, heavier, and more costly.

Although FAA rules currently prevent variations in thrust and control surface
configurations during takeoff, other than cutback, future advances in automated throttle
and flight management systems could lead to certification of “black box” noise abatement
procedures that continuously vary thrust and flight controls to reduce community noise.

For this reason a study of automated flight procedures was also conducted. Flight
procedures were developed that were optimized in two different ways. The first was to
optimize for performance while imposing aerodynamic and noise constraints along the
flight path. The second approach, initiated in this study, was to minimize the contour area
of noise exposure above a specified level.

All long term forecasts of passenger enplanements indicate that air traffic will continue to
grow and the least costly way to accommodate the increase is to simply increase the daily
operations at an airport. This increase in air traffic will drive the need to lower noise levels
of individual aircraft so that more operations can be flown without changing the cumulative
noise environment. In this study we also estimated the potential for increased traffic due to
the operation of quieter aircraft.



2. AIRCRAFT DEFINITIONS

Aircraft configurations for short-to-medium range and medium-to-long range aircraft
defined in Reference 1 were used for further community noise analysis in the present
study.

The short-to-medium range aircraft is a two class, narrow body, 150 seat airplane design
that can fly 2,500 nautical miles. This aircraft has an initial cruise altitude of 31,000 feet
and a cruise Mach number of 0.78. Other design criteria used to size this aircraft included
the takeoff field length no greater than 7,000 feet and the approach speed no greater than
130 knots.

The medium-to-long range aircraft is a three class, international seating (slightly increased
seat pitch), 275 seat airplane design that can fly 6,000 nautical miles. This aircraft has an
initial cruise altitude of 35,000 feet and a cruise Mach number of 0.83. By design the
takeoff field was not to exceed 9,000 feet and the approach speed could not be greater than
140 knots.

In order to span the range of engines that will most likely be used on future aircraft, two
distinctly different engine types were analyzed with each configuration. The engines
defined in Reference 1 were a high bypass ratio (HBPR) turbofan engine and a very high
bypass ratio (VHBPR) turbofan engine. These engines were analyzed on both the short-to-
medium and the medium-to-long range configurations.

One conventional and one advanced high lift system configuration has been developed for
each of the airplane configurations. A definition of the these systems and the estimates of
their low speed aerodynamic characteristics are given below.

For the short-to-medium range aircraft the conventional high lift system consists of a full
span leading edge slat and vane/flap. The slat has a single position for both takeoff and
landing. The trailing edge vane is fixed relative to the flap; maximum flap setting is 40°.
The advanced high lift system uses a slat that is sealed at takeoff and fully open at landing.
The trailing edge system is a Fowler-motion flap in two spanwise segments. Inboard of
the trailing edge break the flap is a two element (main / auxiliary) type with the auxiliary
flap remaining stowed at takeoff. Outboard of the wing break the flap is a single element
design. Additionally, the ailerons are drooped for takeoff and landing thereby providing a
full span high lift system. The maximum flap setting is 35° and refers to the deflection of



the inboard main flap. Figure 1 shows a comparison of the design features of the
conventional and advanced high lift systems.

For the medium-to-long range aircraft the conventional high lift system uses a full span
leading edge slat with a single deflected position. The trailing edge vane/flap uses a simple
external hinge system and has a maximum flap setting of 50°. The advanced high lift
system is basically the same as that for the short-to-medium range aircraft; a two position
full span slat, Fowler-motion flaps, and drooped ailerons for takeoff and landing. The
inboard flap has two elements; the auxiliary flap remains stowed at takeoff. The midspan
and outboard flaps are both single element. The maximum flap setting is 30°. An auto slat
system is assumed for this study which opens the slats from the takeoff (sealed) position to
the landing position near stall to improve the takeoff stall speeds. Figure 2 shows a
comparison of the conventional and advanced high lift system designs for the medium-to-
long range aircraft.

The sizing procedure commonly used in preliminary aircraft design studies is to chose a
combination of wing area (Sw) and thrust (Fn) which yields the least value of maximum
takeoff gross weight (MTOGW) for the design mission. Reference 1, however, showed
that the best way to implement a high lift systems in terms of noise versus performance
trade-offs, is to select a larger Sy, and lower Fy combination. Another design technique
that becomes viable with “oversized” wings is to reduce the approach flap setting to as little
as possible without exceeding the approach speed criteria. This combination of “oversized”
wing and reduced approach flap setting maximizes the noise benefit afforded from the high
lift systems in aircraft designs and will be referred to as “noise sizing”.

A total of eight aircraft from Reference 1 were analyzed in the present study to determine
the impact of “noise sizing” with advanced high lift systems on community noise. The four
aircraft with conventional high lift systems were sized with a Sw and Fp combination that
minimized MTOGW. The sizing criteria of the four aircraft with advanced high lift
systems, however, was different. The Sy, for these aircraft was set to that of their
respective conventional high lift aircraft and then the Fp, which provided the desired takeoff
field length was chosen. This approach was selected to show the maximum noise benefit
obtainable through sizing techniques to reduce noise and through the implementation of
advanced high lift systems.

Table 1 gives a performance comparison of the four short-to-medium range aircraft. The
“noise sized” aircraft with advanced high lift system are heavier than the corresponding



“performance sized” aircraft with conventional high lift systems. This indicates that the
weight penalty of the complex high lift system has a larger impact on the OEW (and
MTOGW) than the reduction in engine size permitted by the improvement in low-speed
L/D. Also, the VHBPR - powered aircraft are heavier and require higher thrust than the
corresponding HBPR - powered aircraft. This is because the range is too short for the
improved fuel efficiency of the VHBPR engine to offset it’s higher weight and drag.

The effect on direct operating cost (DOC) of sizing for noise instead of performance was to
reduce the 0.8% benefit of advanced high lift systems (see Reference 1) to 0.1% for the
short-to-medium range aircraft. Figure 3 shows that this is due to the increase in
ownership cost per trip having a greater impact on DOC than the decrease in cash cost per
trip.

Table 2 shows the same performance comparison for the medium-to-long range aircraft.
Results are similar to the short-to-medium range aircraft, in comparison of advanced to
conventional high lift. Comparison by engine type shows the value of the higher bypass
ration on a longer design mission. The VHBPR engine provides a lower MTOGW and
requires less thrust in spite of a higher OEW than the HBPR engine.

Similar to the short-to-medium range aircraft, the benefit in DOC due to advanced high lift
systems dropped from 0.2% to 0.0% for the medium-to-long range aircraft. Figure 4
shows that the increase in ownership cost per trip is offset by the decrease in cash cost per
trip.

It should be noted that the “top down” DOC methods used in this analysis do not
necessarily represent all of the costs associated with the complexity of the advanced high

lift system.



3. FLIGHT PROCEDURES

Aircraft community noise is a function of both the operating condition of the aircraft and its
proximity to the community. In order to regulate aircraft noise, the FAA has developed a
means of classifying aircraft by their noise certification levels. Noise certification 1s defined
by the noise measured on the ground at three specific locations relative to the flight path of
an aircraft operating at the desired certification takeoff or landing gross weight. The three
locations are commonly known as sideline, takeoff (cutback) and approach. The aircrafi is
flown according to a noise certification procedure which is specified in part 25 of the FAA
certification guidelines. This procedure does not guarantee the lowest noise exposure for
the community. It does however provide a means of comparing and ranking a variety of
passenger aircraft in a given class based on their noise characteristics. The noise
regulations for passenger aircraft have become increased in stringency throughout the years
as expanding airports and surrounding communities have encroached on each other.
Because of this problem, more emphasis has been placed on community noise and so
ICAO has defined other noise abatement procedures that distinguish between different
types of communities for noise relief. The implementation of new technology in thrust
management and flight controls could lead to an even higher degree of specialization of
flight procedures to reduce community noise.

3.1 Noise Certification

A certification flight procedure was first used to evaluate the eight aircraft of this study with
regard to Stage 3 noise certification levels. The rule for Stage 3 noise limits is a function of
only the aircraft takeoff gross weight and the number of engines on the aircraft. Figures 5,
6, and 7 are the certification rule curves for sideline, cutback, and approach noise
respectively. The certification flight procedure requires takeoff power to be maintained
until reaching an altitude of at least 984 feet (300 meters). The thrust is then reduced to that
required to maintain level flight with one engine inoperative or to maintain a four percent
climb gradient with both engines operating, which ever is greater. A flight path was
generated for each aircraft for a certification flight procedure where the power was cutback
at a distance from brake release of 17325 feet to the thrust required to maintain a climb
gradient of four percent. The altitude where this power cutback occurred varied from 1364’
to 1526’ for the medium-to-long range aircraft and from 1604’ to 1892’ for the short-to-
medium range aircraft, depending on the configuration. It was assumed that 4,000 feet
prior to overflying the microphone was an adequate distance to avoid a noise intrusion from



the full power portion of flight at the cutback microphone location (21325 feet from brake
release). As soon as a calibrated airspeed of V,+10 knots was attained it was held constant
and the takeoff configuration selected was not changed (except for landing gear retraction)
until reaching an altitude of 3,000 feet. Figure 8 illustrates the entire certification flight
procedure.

3.2 Standard Noise Abatement

The FAA has developed a tool for conducting airport community noise studies based
largely on the methodology described in Reference 2. The tool is called the Integrated
Noise Method (INM) and has gained acceptance by airport authorities as a means of
conducting Part 150 studies to evaluated the impact on community noise due to changes in
airport operations. The INM was used in this study in part because of the large amount of
performance and noise data available on nearly all existing passenger aircraft. The flight
path data in the INM for any particular aircraft is given at a passenger load factor of 70
percent for several different operating ranges. Flight path data was therefore generated for
each aircraft of the present study at a 70 percent load factor and several ranges.

3.3 Performance Optimization

Optimum performance is a major concern for the overall design of an aircraft. But since the
major portion of flight is at the high altitude cruise condition, the impact of community
noise constraints does not have a significant impact on the overall mission of the aircraft.
Still, for operators who must fly out of noise sensitive airports, the cumulative effect of
reduced performance can begin to impact operating costs. It would therefore be desirable
to fly a takeoff procedure that satisfies the noise constraints provided by a standard noise
abatement procedure but uses less fuel or more importantly requires less time to reach
cruise altitude.

The MDC flight path optimization tool called OTIS (Optimal Trajectories by Implicit
Simulation) described in Reference 3 was used to find the minimum time to climb and
minimum fuel burn solutions for the two short-to-medium range aircraft with HBPR
engines. The OTIS program satisfies boundary conditions by iterating differential
equations through a combination of implicit integration and non-linear programming
(NLP). The boundary conditions established for solving commercial aircraft trajectories
are shown in Figure 9. First the initial condition of an aircraft was provided from the flight
path data output of the CASES sizing program at an altitude of 500 feet to avoid having to
build unnecessary complexity (takeoff analysis, gear retraction, ground effects, etc.) into



the OTIS model. The fundamental assumptions were that automated flight management
and throttle management systems would enable aircraft takeoff procedures to include flap
and slat retraction as well as power reductions once the aircraft has climbed to an altitude of
500 feet. Aerodynamic constraints specified in FAA regulations such as stall margins, and
minimum climb gradient for engine out conditions were modeled as well as other
constraints like maximum pitch rate and rate of climb for passenger comfort, and maximum
time at takeoff power for engine durability. A noise constraint was included that set limits
on noise levels under the flight path beginning at the takeoff microphone location. The
program was free to vary throttle, climb attitude, and the wing trailing edge flap and leading
edge slat retractions, within the limitations of the control systems, from a starting altitude of
500 feet to a final altitude of 10,000 feet (flaps and slats fully retracted by 6,000 feet). The
slat retraction, however had to occur after the flaps were fully retracted.

OTIS program structure requires the user to define several phases of flight so it can
minimize or maximize an objective function. For the aircraft of this study seven phases of
flight were defined and the objective function selected was minimum time of flight to reach
an altitude of 10,000 feet. Table 3 lists the beginning point and an ending point of each of
the seven phases. The beginning of a phase coincides with the end of the previous phase.
At each phase constraints can be defined or changed. A phase can also be defined simply
for modeling convenience. The start of phase 1 is the initial conditions specified as takeoff
power (100% full throttle), optimum flap setting determined for an engine-out balanced
field length condition and airspeed of V,+10 knots. Here the aircraft is released from a
fixed flap and throttle condition and OTIS is free to manage the aircraft flight controls for
throttle, attitude, and flap setting. If the noise constraint is active the noise experienced at
the first community microphone does not exceed the specified limit (95 EPNL). At phase 2
the flight controls are managed such that the community noise does not exceed the noise
limit at the closest point of approach. The noise limit under the flight path was defined as
having the level and fall-off rate typical of an existing Stage 3 aircraft of the same class.
The takeoff model was terminated in phase 7 when the aircraft reached an altitude of
10,000 feet. Table 3 also shows the flight and noise (if invoked) constraints for each phase
where a check mark indicates that the constraint was active.



4. AIRPORT OPERATIONS

Airport models for a typical large airport and a small noise sensitive airport were defined to
show the impact of introducing noise sized aircraft with advanced high lift systems over a
full range of typical airport operations. The data for these models was obtained from the
latest Environmental Impact Reports for John Wayne airport and John F. Kennedy
International airport.

4.1 Small / Medium Noise Sensitive Airport

John Wayne airport (SNA) in Orange County, California can always be found near the top
of the list of the nation’s most noise stringent airports. The recent amendment to the John
Wayne airport access plan to comply with a new noise abatement flight procedure policy
that was under FAA consideration, and the corresponding EIR (see Reference 4) made it
an ideal source of data for the present study. Information on 1991 airport operations
including aircraft mix, ground tracks, takeoff weights, and takeoff flight procedures were
used to develop an airport model for the INM program. This model was then calibrated
with the actual noise contour data found in Reference 4. It should be noted that the noise
contours of the EIR were calculated from noise measurements averaged over the entire
year. Table 4 shows the number of daily departures used in the model for the various
aircraft and class. Class denotes noise rules that define maximum takeoff weights for a
given aircraft type where A is less stringent than AA and E is the most restrictive. Data
from the INM internal database was used which most closely matched each of these
aircraft. Once the noise contours calculated from INM were calibrated against the EIS data,
a model for projected operation in the year 2015 was developed. This model was again
based on airport operations projections from the EIR for the year 2005. To project to the
year 2015 the fleet mix was assumed to remain unchanged with an operations growth rate
of 3% per year. The fleet mix and number of operations for 2015 are given in Table 5.

4.2 Large Capacity Airport

One of the largest international airports in the United States that has community noise
concerns is New York’s John F. Kennedy (JFK) International airport. The Port of New
York Authority (PNYA) published an EIR for JFK which included data for airport
operations in 1991. This data included fleet mix and runway usage. Additional
information not included in the report was obtained from the PNYA directly. As was the
case for the SNA model, INM data was used to model the aircraft operations at JFK. Table



6 shows the aircraft used to match the 1991 fleet mix described by the PNYA. The initial
model included 43 aircraft. Because of the complexity of this model, a study to find an
equivalent fleet mix with much fewer aircraft types was conducted. It was found that a
fleet mix consisting of 6 aircraft, representative of each ICAO aircraft category, was
sufficient to model all operations in 1991. A model of projected airport operations in the
year 2015 was then made that assumed all Stage 2 aircraft were phased out and the number
of operations grew at an average rate of 3% per year. A model of the 2015 operations at
JFK is also shown in Table 6. The original model consisted of 26 aircraft types. Like in
the 1991 model, a 6 aircraft model was found to be an adequate representation of the
original model based on a noise contours comparison.

4.3 Introduction of Noise Sized Aircraft

Once baselines were established to represent airport operations in the year 2015 at a small /
medium noise sensitive and a large capacity airport, an assessment of substituting
operations with noise sized aircraft with advanced high lift systems was made. Of the four
aircraft modeled in 2015 at SNA (Table 5), only one was assumed to already benefit from
advanced high lift systems. Because the other three aircraft were assumed to be better
represented by the performance sized aircraft with conventional high lift systems and
HBPR engines, their operations were replaced with the noise sized 150 passenger aircraft
with HBPR engines and an advanced high lift system. The change in community noise at
SNA was then assessed. Of the six aircraft types in the 2015 model for JFK (Table 5), the
three aircraft that can be considered performance sized aircraft were replaced with similar
noise sized aircraft with advanced high lift systems. For both of these airports, the type of
aircraft replaced were from two general ICAO categories, a category 2 aircraft and a
éategory 5 aircraft. The category 2 aircraft is represented by the small-to-medium range
aircraft of this study and the category 5 by the medium-to-long range aircraft. The change
in performance due to advanced high lift systems on a future aircraft was defined as the
difference in performance between the performance sized configuration with conventional
high lift systems and the noise sized configuration with advanced hi gh lift systems for each
respective category of aircraft.
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5. ANALYSIS AND RESULTS
5.1 Flight Performance Assessment
5.1.1 Certification Procedures

The flight path data that was generated using the noise certification procedure described in
section 3.1 for the four short-to-medium range aircraft are shown in figure 10. The two
configurations with advanced high lift systems have lower takeoff speeds than the
corresponding configurations with conventional high lift systems. This permits a lower
thrust to (aircraft) weight ratio (Fn/Wt), which results in lower thrust and altitude on the
flight path. The reduced thrust requirement is, however a major benefit for noise reduction
as will be discussed in later sections. The VHBPR powered configurations have higher
MTOGW and higher thrust levels than the corresponding configurations with HBPR
engines.

Noise certification flight path data for the four medium-to-long range aircraft are shown in
figure 11. Once again the lower takeoff speed of advanced high lift systems cause a
reduced takeoff thrust requirement which in turn reduces aircraft altitude. The VHBPR
powered configurations for the medium-to-long range aircraft do show a significant
improvement in performance over the HBPR engines (Table 2). The lower MTOGW
permits a reduction in required thrust compared to the corresponding HBPR powered

configurations.

5.1.2 Standard Noise Abatement Procedures

Two standard noise abatement flight paths for each of the short-to-medium range and
medium-to-long range aircraft were generated following the ICAO recommended standard
procedure for close in and distant communities. Figure 12 shows a comparison for the 150
passenger short-to-medium range aircraft at the design range of 2,500 nautical miles and a
load factor of 70%. The flight procedures shown are: (a) a cutback at 800 feet or 1,000 feet
for noise abatement in close communities and (b) a cutback at 1,500 feet for noise
abatement in distant communities. Data for the configuration with a performance sized
conventional high lift system is shown along with data for the one with a noise sized
advanced high lift system. A comparison of the two indicates that the improvement in L/D
due to the advanced high lift system has enabled the aircraft to takeoff at a lower speed.
Because of the lower speed the thrust required is less. Figure 13 and 14 give similar
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comparisons for reduced missions of 1,500 and 500 nautical miles respectively. Figure 15
is included to show that as the range is reduced the takeoff field length and airspeed
decrease, and the flight path altitude increases.

Figure 16 shows a comparison for the 275 passenger medium-to-long range aircraft at the
design range of 6,000 nautical miles. The flight procedures shown here is the certification
procedure of reducing power at a distance from brake release of 17325 feet. Data for both
the conventional high lift system and advanced high lift system configurations are shown.
A comparison of the two indicates that the improvement in L/D due to the advanced high lift
system has enabled the aircraft to takeoff at a lower speed. Because of the lower speed the
takeoff thrust required is less. Figure 17, 18, and 19 give similar comparisons for reduced
missions of 4,500, 3,500 and 2,500 nautical miles respectively. Figure 20 is included to
show that as the range is reduced the takeoff field length decreases. By comparing Figure
15 with Figure 20 it can be noticed that reducing range affects the medium-to-long range
aircraft more dramatically than it does for the short-to-medium range aircraft. Figure 21
compares the takeoff roll distance for several flight paths of both the short-to-medium range
and medium-to-long range aircraft. A reduction in payload from 100% to 70% caused the
takeoff field length to decrease by an average of 28% for the short-to-medium range aircraft
and by an average of 23% for the medium-to-long range aircraft. The further effect of
reducing the range by 40% (from 2,500 NM to 1,500 NM or from 6,000 NM to 3,500
NM) caused the takeoff field length to decrease by an additional 12% for the short-to-
medium range and by an additional 29% for the medium-to-long range aircraft. The larger
reduction for the medium-to-long range aircraft is due to the fact that the corresponding fuel
burned for the 40% range mission is a greater percentage of the total gross weight of the
aircraft than for the short-to-medium range aircraft. The takeoff field length has a direct
impact on the rest of the flight path and consequently the community noise. The shorter
field length of the reduced payload and range causes the aircraft to be higher but flying
slower over the community.

To see the benefit of advanced high lift systems, performance factors were calculated from
the short-to-medium range and medium-to-long range aircraft data. Table 7 lists the factors
for thrust, speed, and altitude for the 150 passenger and 275 passenger classes of aircraft at
a 70% passenger load factor. Note that two sets of data are shown for the 150 passenger
aircraft, a close-in community (cutback at 800 feet altitude) and a distance community
(cutback at 1,500 feet altitude) noise abatement procedure. The thrust and speed factors are
inversely proportional to the distance factors and the factors for the 275 passenger aircraft
are, in general closer to unity than for the 150 passenger aircraft.
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5.13 timized Flight Procedures

Optimized flight trajectory solutions for the short-to-medium range aircraft were generated
using the OTIS program with minimum time to climb from an altitude of 500 feet to 10,000
feet as the objective function. The first set of results are for the aircraft which has a
conventional high lift system and HBPR engines. The initial conditions are for a 2,500
NM mission with a 70% passenger payload. Figure 22 shows the altitude, flight path
angle (y), lift to drag ratio (L/D), and angle of attack (cr) plotted against distance from brake
release (DFBR). This flight path reached the constraint limit of y = 2.290 (4% climb
gradient limit) between 1.5 and 2.2 NM. The optimum solution was to immediately reduce
the flight path angle, accelerate, and retract the flaps from the initial takeoff position (159
to fully retracted at 1.9 NM. The aircraft then flew with 0° flap, slats extended until 5.3
NM. The slats were retracted with the specified retraction time of 8.8 seconds, between
5.3 NM and 5.9 NM. Linear interpolation was used between takeoff aero and cruise aero
data sets because aerodynamic data was not available for modeling slat transition.

Figure 23 shows how noise (EPNL), corrected net thrust (Fn/8), calibrated airspeed
(Vcal), and rate of climb (ROC) vary with DFBR. The noise constraint (dashed curve),
although not imposed is also shown. It can be noticed that the noise crosses this curve at
distance of 3.7 NM. The maximum climb rate of 4,000 feet per minute (66.7 fps) was
never reached. The engines were at full power (takeoff or climb) throughout this flight
path to minimize time.

Referring back to Figure 22, the angle of attack shows an abrupt drop to 3 degrees
followed by an abrupt recovery. This is believed to be an error in OTIS constraint
application which was not resolved at the time of this report. This reflects in the L/D and
may also affect the flight path angle and the climb rate (following chart).

The same mission was then flown with the noise constraint activated. Figure 24 shows
that the minimum limit of y = 2.290 (4% climb gradient limit) was only breifly reached at

3.7 NM. Flaps were fully retracted by 5.5 NM and slats were retracted by 7.4 NM.

Figure 25 shows that the noise limit of 95 EPNL at 10,000 feet (1.6 NM) DFBR was
achieved and the fall-off noise constraint curve drove the flight path from that point until
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6.6 NM where the noise level began to drop below the limit. Thrust was reduced to about
54% takeoff power and gradually increased to 100% at 6.6 NM. The transition from
takeoff power to climb power (8.8 seconds) occurred between 6.4 NM and 6.9 NM. The
climb rate limit (66.7 fps) was never reached.

Figure 26 shows the results for the short-to-medium range aircraft with an advanced high
lift system and HBPR engines subjected to the same set of constraints (including noise) as
the previous example. The minimum limit of y = 2.299 (4% climb gradient limit) was
again reached breifly at 4.0 NM. Flaps were fully retracted at 5.0 NM and slats were
retracted at 7.5 NM.

Figure 27 shows the noise limit of 95 EPNL at 1.6 NM was reached and the fall-off noise
constraint curve drove the flight path for this aircraft from that point until 5.5 NM where
the noise level began to drop below the limit. The climb rate limit (66.7 fps) was not
reached. The transition from takeoff power to climb power occurred at 7.0 NM.

The objective function, minimum time to reach 10,000 feet, was 225 seconds for the
aircraft with a conventional high lift system without a noise constraint imposed. This was
extended to 277 seconds when the noise constraint was activated. The aircraft with the
advanced high lift system required 291 seconds to reach 10,000 feet with noise constraints
invoked. This longer time is attributed to the fact that this aircraft is sized to a lower thrust.
The minimum throttle required to meet the noise constraint was, however, less severe (59%
vs. 54%) and sustained over a shorter duration than that of the aircraft with a conventional
high lift system.

5.2 Single Event Noise Assessment

5.2.1 Standard Flight Procedures

Single event noise contours (noise due to a single takeoff and a single landing of one
aircraft) were generated for all eight aircraft at the design MTOGW and range. Single event
noise contours were also generated for all of the 70% payload flight paths at the maximum
and reduced ranges discussed in section 5.1. Table 8 shows how the noise certification
levels and several EPNL and SEL contour areas compare for the four short-to-medium
range aircraft. The advanced high lift system has a larger benefit for the HBPR powered
aircraft than for the VHBPR powered aircraft where the 85 EPNL contour area shows a
reduction of 24% and 6% respectively. Table 9 shows a similar trend for the medium-to-
long range aircraft with the 85 EPNL contour area reduced by 10% for the HBPR powered
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configurations and by 4% for the VHBPR powered configurations for the advanced high
lift to conventional high lift comparisons.

The noise levels at certification locations along with EPNL and SEL contour areas are
compared in Table 10 for the short-to-medium range aircraft with HBPR engines with
conventional and advanced high lift systems for 70% passenger payload factors. Results
for three ranges, 5,00, 1,500, and 2,500 nautical mile missions are shown. This data
shows that as aircraft range is reduced, the benefits of noise sized aircraft with advanced
high lift systems become more pronounced. With a close-in noise reduction procedure
(thrust cutback at an altitude of 800 feet), for example the 85 EPNL contour area reduction
changes from 22% to 30% when the aircraft range is reduced from 2,500 to 500 nautical
miles.

To assess the impact of replacing operations existing in 2015 with new noise sized aircraft
which benefit from improved L/D due to advanced high lift systems, the performance
factors of Table 7 were applied to flight path data of aircraft in the 2015 airport models
(short-to-medium range aircraft factors to MD-90 and medium-to-long range aircraft factors
to MD-11 and 747). A comparison of noise certification levels and contour areas are
shown in Table 11 for these six aircraft. The benefit in terms of AEPNdB at certification
points and percent area change for EPNL and SEL contour areas are also given for the
aircraft with improved L/D compared to their respective baselines. For a short-to-medium
range aircraft (MD-90) the 85 EPNL contour area was reduced by 25%. For the medium-
to-long range aircraft (MD-11 and 747) the corresponding contour area change was less
(14% and 15%).

522 timized Flight Procedures

Single event noise contours were generated for each of the OTIS solutions discussed in
section 5.1.3. Figure 28 shows the resultant 85 EPNL contour for the short-to-medium
range aircraft with conventional high lift system and HBPR engines without an imposed
noise constraint. The portion of the contour shown is only the takeoff after the initial
condition (aircraft altitude is 500 feet) used in the OTIS model. The contour width
decreases to 3 NM due to rapid acceleration. After 3 NM the contour width stays fairly
constant as the trade between altitude gain and net thrust gain balanced. Finally at 4 NM
the continued altitude gain becomes the dominate factor and the contour width begins to
decrease. The closure point is reached at 5.8 NM.
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Figure 29 shows the resultant 85 EPNL contour for this same aircraft but with an imposed
noise constraint. The contour initially increased in width to a sideline distance of 3500 feet.
It then quickly reduced when the throttle is cut back to meet the initial noise constraint at
1.6 NM. The contour width then grows less rapidly as the throttle is gradually restored to
90% at 5.5 NM. The contour width then drops off due to altitude gain. The closure point
18 reached at 6.8 NM.

Figure 30 shows the resultant 85 EPNL contour for the short-to-medium range aircraft
with an advanced high lift system and HBPR engines with an imposed noise constraint.
The maximum sideline distance of the contour was 2900 feet. The power cutback again
caused this distance to drop to 2000 feet. After the throttle was ramped up to 100% at 5.5
NM there was no further fattening of the contour. The closure point is reached at 7.9 NM.
The overall contour area for this aircraft is less than that for the aircraft with a conventional
high lift system subjected to the same noise constraint.

5.3 Cumulative Noise Impact

Ldn noise contour areas were calculated for both the small / medium and the large capacity
airports for years 1991, 2005, and 2015 and are shown in Table 12 and Table 13,
respectively. The contour area for 65 Ldn is reduced by 10.8% in 2015 as a result of
implementing noise sized aircraft with advanced high lift systems at the small / medium
airport. At the large airport, however, the 65 Ldn contour area reduced by 15%. Contours
for the small / medium noise sensitive airport model were also made for the current (1995)
year. Figure 31 compares areas with Ldn noise exposures greater than 65 dB for these
years. The change in slope of the curve before and after 2005 are due to the phase out of
noisy stage 3 aircraft. The increase in area between 2005 and 2015 is due solely to the
increase in operations that represent a 3% per year growth. When all aircraft have the
performance benefit of advanced high lift systems the contour area drops by 3.9% from
1.02 to 0.98 square miles.

Figure 32 shows the 65 Ldn contour areas for the large airport. A reduction of 12% in
contour area between 1991 and 2005 is due to the phase out of all the noisier Stage 2
certified aircraft. The total number of operations has grown at a rate of 3% per year from
351 operations in 1991 to 536 and 721 in years 2005 and 2015, respectively. After 2005
the fleet mix was assumed the same.
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6. CONCLUSIONS AND RECOMMENDATIONS

The results of this task have shown that 2 modest noise benefit can be realized through
“noise sizing” with advanced high lift systems. Single event contour areas were reduced
by as much as 25% for short-to-medium range aircraft and by as much as 15% for
medium-to-long range aircraft when standard noise abatement flight procedures are
followed. Furthermore, the potential for growth in airport operations due to noise sized
aircraft with advanced high lift systems was 10% for a small noise sensitive airport and
20% for a large capacity airport.

The OTIS optimization program was used to show that the noise reduction benefit of new
aircraft can be maximized by implementing automated flight management and thrust
management systems in an aircraft. Additional contour area reduction was obtained for the
small-to-medium range aircraft with HBPR engines.

As growth in airport operations continue to clash with growing airport communities more
emphasis will be placed on reducing the size of the noise footprint in the community.
Recent modifications to the OTIS program supported by MDC under IRAD funds has
included the capability to set noise contour area as the objective function to minimize. The
solution process for a fixed node (beginning and ending points of a phase) structure is as
follows:

« States, controls, and control rates are defined at every node

+ Placards (Constraints) are calculated at every node and at the midpoint of every node

» Collocation equations are defined at all midpoints between nodes

*  The sideline distance is calculated for a fixed dB noise level at all nodes and midpoints

« Fixed dB contour area is calculated by summing the trapezoids defined by drawing a
straight line between the sideline distances at all nodes and midpoints

» The NLP problem is solved with the objective function equal to contour area and the
states, controls, control rates at every node as independent variables as well as phase
times
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It should be noted that the gradient of the objective function is computed everywhere for all
variables. This method is in the process of being validated and will soon be available to
find minimum contour area solutions for the aircraft of this study.

With the takeoff noise contributing less to the total noise contour area, the emphasis on
reducing community noise will shift towards approach noise. Through the incorporation of
advanced high lift systems, automated flight management and thrust management systems
approach flight procedures could also be optimized for noise.
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Noise Impdct Study
High Lift System Definitions

l 150 Seat Twin I

Ref. Quant. from 3-view J147958:

Sref = 1099.44 sq. ft.
AR =110

Taper ratio = 0.275
c/4 sweep = 27.0°

Conventional High Lift System Advanced High Lift System
Leading edge device Single position slat Two position slat
(takeoff & landing) takeoff (sealed) landing
Trailing edge device vane/flap Fowler motion
2-seg inbd / 1-seg outbd
- Q\ wakeoff
landing : % : \
\ landing
Additional features Drooped ailerons

Figure 1. - 150 Passenger Aircraft High Lift Systems Comparison
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Noise Impact Study
High Lift System Definitions

| 275 Seat Twin I

Ref. Quant. from 3-view J147960:
Sref = 2789.3 sq. ft.
AR=11.0

Taper ratio = 0.2972
c/4 sweep = 34.95°

Conventional High Lift System Advanced High Lift System
Leading edge device Single position slat Two position slat
(takeoff & landing) takeoff (sealed) landing
Trailing edge device vane/flap Fowler motion flap
= 2-seg inbd / 1-seg mid & outbd
takeoff
=
\ landing i SN — \
\ landing
Additional features Drooped ailerons for takeoff & landing

Figure 2. - 275 Passenger Aircraft High Lift Systems Comparison
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Figure 10. - Certification Flight Paths of Short-to-Medium Range Aircraft
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275 PAX, 6000 NM, 100% LF MISSION
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Figure 20. - Effect of Reduced Range Missions on Flight Paths for 275 Passenger Aircraft
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Figure 21. - Effects of Reduced Range on Takeoff Roll Distances
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TABLE 4. - Aircraft Operations at Small/Medium Airport in 1991

Aircraft Type CLASS No. of Average daily
departures
MD-80 A 13.37
737 A 8.34
737 AA 12.08
737 E 10.31
757 A 11.36
757 AA 16.06
A320 A 5.39
A320 AA 0.15
BA1l46 5.82

TABLE 5. - Aircraft Operations at Small/Medium Airport in 2015

Aircraft Type No. of Average daily departures
* MD-90 3148
* 737-300 81.64
757 61.04
* A320 24.84

Total 199.00

*  Potential for performance benefit when replaced with “noise sized”
aircraft with advanced high lift systems
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TABLE 6. - Aircraft Operations at a Large Airport in 1991 and 2015

ICAO GENERIC [PNYA (SACTYPE) (6 ACTYPE) [PNYA (6 A/C TYPE)
AIRCRAFT 1991 1991 1991 2015 2015
- TYPE FLEET MIX FLEET MIX FLEET MIX FLEETMIX  FLEET MIX
[ CONCRD SS 5.58 5.58 5.58
74710Q 5 80.52 149.54 74.77
747200 5 12.56
747208 5 7.02
DC1010 5 Qar 7477
DC1030 5 |s.70
747400 s 227.11 227.11
MD11 5 0.02 208.60 208.60
A300 4 43.08 126.88
L10115 4 38.5 5.87
747SP 4 2.9 87.60
767479 4 3.78 11.33
767CF6 4 38.62 126.88 96.50 203.30
A310 3 3024 56.22 5622 ess0
757RR 3 25.98 52.84
TSTPW 3 201.20 320.54
727200 2 98.96 191.76 191.76
727015 2 |ess
727100 2 418
707320 2 2.00
707 2 3.64
MD82 2 15.46
F28MK4 2 154
DC860 2 10.92
DC870 2 3.30
DC9S50 2 5.92
DC850 2 6.00
CVRS80 2 1.72 3.50
Gus 2 0.16 027
MD83 2 6.78 31.43
MDS0 2 4348 136.07
737300 2 4.90 9.94
737382 2 1.26 23.48
737QN 2 20.56 20.83
BAE146 2 3.14
DHC? 1 96.36 178.94 178.94 6.70 363.42
DHCB 1 9.62 156
BECS58P 1 .40 162.59
CNAS00 1 0.78 52.91
SF340 1 6.78 13.76
HS748A 1 0.12 0.12
MU3001 1 0.02 0.02
LEAR35 1 028 0.58
SD330 1 61.58 125.18
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TABLE7.- Performance Factors of Noise Sized Aircraft
With Advanced High Lift Systems

hort-to-Medium Range Aircraft at Maximum Range, 70%PL, 800
Cutback
Iltitude, ft DFBR Ratio Speed Ratio Thrust Ratio
0 1.00 1.00 0.88
0 1.07 0.97 0.89
35 1.06 0.96 0.89
800 1.06 0.98 0.89
801 1.06 0.98 0.96
3000 1.01 0.98 0.96
3001 1.01 0.98 0.89
5000 1.06 1.00 0.89
7503 1.09 1.00 0.88
hort-to-Medium Range Aircraft at Maximum Range, 70%PL, 1500'
utback
Altitude, ft DFBR Ratio Speed Ratio Thrust Ratio
0 1.00 1.00 0.88
0 1.07 0.97 0.89
35 1.06 0.96 0.89
1000 1.07 0.98 0.89
1500 1.09 0.98 0.89
1501 1.09 0.98 0.96
3000 1.02 0.98 0.96
3001 1.02 0.98 0.89
5000 1.08 1.00 0.88
edium-to-Long Range Aircraft at Maximum Range, 70%PL, 1500
utback
Ititude, ft DFBR Ratio Speed Ratio Thrust Ratio
0 1.00 1.00 0.90
0 1.07 0.98 0.91
35 1.05 0.97 0.91
1000 1.02 0.98 0.91
1500 1.04 0.98 0.91
1501 1.04 0.98 0.94
3000 1.01 0.98 0.94
3001 1.01 0.98 0.91
6000 1.06 1.00 0.91
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